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have become a common tool used in the mapping of wildland fire effects. Fire
severity, defined as the degree to which a site has been altered, is often the variable mapped. The Normalized
Burn Ratio (NBR) used in an absolute difference change detection protocol (dNBR), has become the remote
sensing method of choice for US Federal land management agencies to map fire severity due to wildland fire.
However, absolute differenced vegetation indices are correlated to the pre-fire chlorophyll content of the
vegetation occurring within the fire perimeter. Normalizing dNBR to produce a relativized dNBR (RdNBR)
removes the biasing effect of the pre-fire condition. Employing RdNBR hypothetically allows creating
categorical classifications using the same thresholds for fires occurring in similar vegetation types without
acquiring additional calibration field data on each fire. In this paper we tested this hypothesis by developing
thresholds on random training datasets, and then comparing accuracies for (1) fires that occurred within the
same geographic region as the training dataset and in similar vegetation, and (2) fires from a different
geographic region that is climatically and floristically similar to the training dataset region but supports more
complex vegetation structure. We additionally compared map accuracies for three measures of fire severity:
the composite burn index (CBI), percent change in tree canopy cover, and percent change in tree basal area.
User's and producer's accuracies were highest for the most severe categories, ranging from 70.7% to 89.1%.
Accuracies of the moderate fire severity category for measures describing effects only to trees (percent
change in canopy cover and basal area) indicated that the classifications were generally not much better than
random. Accuracies of the moderate category for the CBI classifications were somewhat better, averaging in
the 50%–60% range. These results underscore the difficulty in isolating fire effects to individual vegetation
strata when fire effects are mixed. We conclude that the models presented here and in Miller and Thode
([Miller, J.D. & Thode, A.E., (2007). Quantifying burn severity in a heterogeneous landscape with a relative
version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, 109, 66–80.]) can
produce fire severity classifications (using either CBI, or percent change in canopy cover or basal area) that
are of similar accuracy in fires not used in the original calibration process, at least in conifer dominated
vegetation types in Mediterranean–climate California.

Published by Elsevier Inc.
1. Introduction

Multispectral satellite data have become a common tool in the
mapping of wildland fire effects (Tanaka et al., 1983; Lopez Garcia &
Caselles, 1991; Rogan & Franklin, 2001; Miller & Yool, 2002; Brewer
1 916 640 1090.

nc.
et al., 2005;Wimberly & Reilly, 2007). “Fire severity” is one of themost
commonly mapped measures of fire effects to vegetation and soils
(Ryan & Noste, 1983; Agee, 1993; DeBano et al., 1998; Lentile et al.,
2006). In the disturbance ecology literature, “severity” is usually
defined as the effect of a change agent on an ecological community, or
a measure of the degree to which a site has been altered (Pickett &
White, 1985; Turner et al., 1998). The composite burn index (CBI) was
developed by Key and Benson (2005a) as a semi-quantitative field
measure of fire severity experienced in a plot, and has recently been
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used in several fire severity mapping studies (van Wagtendonk et al.,
2004; Epting et al., 2005; De Santis & Chuvieco, 2007). CBI is normally
calculated as the linear average of fire effects seen in all vegetation
strata (i.e., understory, midstory and overstory), exposed surface soil,
and non-photosynthetic surface fuels. CBI should therefore be
correlated to satellite derived indices since satellites provide inte-
grated measurements at the pixel level (Key, 2006). Chuvieco et al.
(2006) have shown that CBI is highly correlated to the Landsat near
infrared (NIR) band in combination with either the red or short wave
infrared (SWIR) bands.

While CBI field values can be calculated for an individual stratum,
i.e. the upper canopy, or as an average across all strata, CBI is not a
variable that is familiar to most resource managers. In forested
environments, Landsat derived indices are predominantly correlated
to variables describing the upper canopy structure (Stenback &
Congalton, 1990; Cohen & Spies, 1992; Zhu et al., 2006; De Santis &
Chuvieco, 2007). Landsat-derived indices of fire effects to forestlands
should therefore theoretically be correlated to pre- and post-fire
measures of basal area and canopy cover, which are commonly used
field measures of upper forest canopy structure (Cade, 1997). Basal
area, defined as the sum of the cross-sectional areas of tree boles in a
sampled area, forms the fundamental basis for mensuration,
analysis, mapping and management of forest resources (USDA,
1992; Avery & Burkhart, 1994). Canopy cover, defined as “the
proportion of ground… expressed as a percentage that is occupied
by the perpendicular projection downward of the aerial parts of the
vegetation” is an important variable most often used in models of
wildlife and plant species habitat (Cade, 1997; Brohman & Bryant,
2005; Zielinski et al., 2006). Habitat maps are often made, and
habitat models calibrated, from aerial photography where canopy
cover can be the only practicable measure of tree cover (Cade, 1997).
Moreover, basal area and canopy cover can be derived from Forest
Inventory and Analysis (FIA) plot data that form the backbone of
forest inventory data on USDA Forest Service lands (USDA, 1992;
Dixon, 2002). The FIA program does not explicitly measure canopy
cover; it must be modeled using tree inventories by species and
diameter. In order to meet the needs of silviculturists and biologists,
severity maps in both units of canopy cover and basal area are often
desirable.

The Normalized Burn Ratio (NBR) computed from Landsat TM NIR
and SWIR bands (4 and 7, respectively) has gained considerable
attention in recent years for mapping burned areas (Miller & Yool,
2002; Brewer et al., 2005; Epting et al., 2005; Key & Benson, 2005b).
NBR is formulated like the normalized difference vegetation index
(NDVI) except Landsat TM SWIR band 7 is used in place of the red band
3 as follows:

NBR =
Band4−Band7
Band4 + Band7

: ð1Þ

NBR is primarily sensitive to living chlorophyll and water content
of soils and vegetation, but it is also responsive to lignin, hydrous
minerals, ash and char (Elvidge, 1990; Key, 2006; Kokaly et al., 2007).
Most fire severity mapping applications to date have subtracted a
post-fire NBR image from a pre-fire NBR image in an absolute change
detection methodology to derive the “differenced NBR” (dNBR) as
follows:

dNBR = prefireNBR−postfireNBR: ð2Þ

Since chlorophyll contents vary due to vegetation type and density,
each absolute differenced image should ideally be stratified by pre-fire
vegetation type and independently calibrated (Miller & Yool, 2002;
Key & Benson, 2005b; Zhu et al., 2006; Kokaly et al., 2007; Miller &
Thode, 2007). Miller and Thode (2007) therefore proposed the
creation of a relative differenced NBR (RdNBR) to remove the biasing
of the pre-fire vegetation by dividing dNBR by the square-root of the
pre-fire NBR as follows:

RdNBR =
dNBRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ABS prefireNBR=1000ð Þ
p : ð3Þ

By convention, NBR is scaled by 1000 to transform the data to
integer format; therefore the pre-fire NBR must be divided by 1000 in
the RdNBR formula (Key, 2006; Miller & Thode, 2007). The absolute
value of the pre-fire NBR in the denominator allows computing the
square-root without changing the sign of the original dNBR. Positive
RdNBR values therefore represent a decrease in vegetation cover, just
like dNBR, while negative values represent an increase in vegetation
cover. Ideally, normalization should not require applying a square-root
transformation to the denominator, but Miller and Thode (2007)
found that the square-root allowed a better fit of a relative dNBR index
to field values in sparsely vegetated plots.

Ecological studies have long used either or both absolute and
relative versions of the same measure (i.e. density, frequency, and
dominance) depending on the definition of the measure being
addressed (McCune & Grace, 2002). Both absolute and relative
measures are useful and provide different information about fire
effects, e.g. the amount of biomass killed vs. the percentage of biomass
killed. It should be noted that most variables included in the CBI
protocol are estimated from the relative change perspective (Key &
Benson, 2005a). Hypothetically, a major advantage of relative indices
is that a single set of thresholds can be used to create categorical
severity classifications for fires occurring in similar vegetation types
without requiring additional calibration field data for each fire (Zhu
et al., 2006; Miller & Thode, 2007). This paper tests this hypothesis by
using thresholds developed on a randomly selected training dataset to
assess classification accuracy on independently mapped fires. Map
accuracies were compared for: 1) fires that occurred within the same
geographic region as the training dataset and in similar vegetation
types, and 2) fires from a different geographic region that is
climatically and floristically similar to the training dataset region but
supported more complex vegetation structure. Additionally, three
different measures of fire severity based on CBI, percent change in
canopy cover, and percent change in basal area were calibrated to
RdNBR and their accuracies assessed.

Miller and Thode (2007) presented a classification derived from a
regression of CBI to RdNBR using all plots regardless of vegetation
type, including non-forested types, and without withholding an
independent set of plots for validation. However, high-quality
accuracy assessment procedures require that validation data be
independent of the training data so that the assessment is not biased
in favor of the map (Congalton & Green, 1999). We therefore also
compared a classification of plots randomly selected from the same
fires used for training to the original classification reported in Miller
and Thode (2007) to assess whether using all plots affected
classification accuracies.

2. Data and methods

2.1. Study locations

2.1.1. Sierra Nevada
Twenty-five fires used in this study are located within the region

formed by the Sierra Nevada Forest Plan Amendment (SNFPA)
planning area (USDA, 2004), which guides land and resource
management on 50,000 km2 of National Forest land on eleven US
National Forests (Fig. 1 and Table 1). CBI data from fourteen of these
fires that occurred in 2002–2004 were originally used by Miller and
Thode (2007). Four additional fires that occurred in 2001 along with
seven fires that occurred entirely within Yosemite National Park (NP)
were included in this study. Yosemite NP is not managed under the



Fig. 1. Map of the study area showing location of the fires used in the analyses.
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SNFPA but is nested within the SNFPA area (further references to the
“SNFPA area” should be understood to exclude Yosemite NP). The
SNFPA planning area not only includes the Sierra Nevada and its
foothills but also the Warner Mountains, Modoc Plateau, White
Mountains, Inyo Mountains and portions of the southern Cascades.
Climate is Mediterranean-type, with warm, dry summers and cool,
wet winters; nearly all precipitation falls between October and April
(Minnich, 2007). Forest vegetation in the SNFPA areas sampled in this
study is very diverse, with different dominant species and high
variation in density and vertical structure. Most fires (and the
majority of sample plots) were located in montane vegetation types,
with ponderosa pine (Pinus ponderosa) dominant at lower eleva-
tions; white fir (Abies concolor), incense cedar (Calocedrus decurrens),
sugar pine (P. lambertiana), ponderosa pine, and Douglas fir
(Pseudotsuga menziesii) at intermediate elevations; and Jeffrey pine
(P. jeffreyi) and red fir (A. magnifica) at the higher elevations. The
amount of understory in the montane forest zone is variable and
largely dependent on the openness of the forest. In the absence of
periodic fires, dense thickets of conifer seedlings and saplings have
become common (Kilgore & Taylor, 1979; Parsons & DeBenedetti,
1979). Shrubs are patchy with variable abundance (cover typically 5–
10%, but can be N30%); herbs and grasses are sparse, with cover
usually b5% (Rundel et al., 1977). Fires east of the Sierra Nevada crest
and in the Cascade Range were generally located in ponderosa pine
forest with an understory of grasses and Great Basin shrub species,
such as sagebrush (Artemisia tridentata) and bitterbrush (Purshia
tridentata). Juniper (Juniperus occidentalis) is common in more xeric
east-side sites. Elevations of plots within fire perimeters ranged from
1375 to 2903 m.
2.1.2. Klamath Mountains
Five fires in this study occurred during 2006 on the Klamath and

Six Rivers National Forests in the Klamath Mountains of northwestern
California (Fig. 1 and Table 1). Climate in the Klamath Mountains is
also Mediterranean, but can be variable due to strong west to east
moisture and temperature gradients caused by steep, complex terrain
and proximity to the Pacific Ocean (Skinner et al., 2006).Whilemost of
the dominant conifer species are shared with the Sierra Nevada and
Cascade Ranges, overall conifer diversity is much higher in the
Klamaths, and forest environments are generally more mesic with
correspondingly greater vegetation diversity and complexity (Barbour
et al., 2007). Midstory evergreen and deciduous hardwood trees are
abundant, often forming a multistoried canopy, and a cover of
herbaceous understory vegetation can be substantial (Sawyer &
Thornburgh, 1977; Sawyer et al., 1977). Elevations of sample plots
within fires in the Klamath Mountains ranged from 241–2084 m.

2.2. Field data

Field data were collected during the summer following each fire.
Fires on National Forest lands were sampled by Forest Service crews,
while National Park Service (NPS) or US Geological Survey (USGS)
crews collected data on the fires that occurred in Yosemite NP. CBI data
and/or individual tree mortality data were collected on all fires, but
both protocols were not used on all fires (Table 1). Although the CBI
protocol does call for estimating tree cover by stratum, i.e. sub-canopy
and upper canopy, total tree canopy cover is not estimated so we were
unable to include the Yosemite data in analyses stratified by pre-fire
tree canopy cover.



Table 1
Fires included in the study

Year of fire Fire name aUnit Path/row Pre-fire image date Post-fire image date Train/validation Field protocol

1999 Dark Yosemite NP 42/34 7/9/1999 7/11/2000 V CBI
1999 Lost Bear Yosemite NP 42/34 7/9/1999 7/11/2000 V CBI
2001 Blue Modoc NF 44/31 7/28/2001 7/15/2002 V Tree mortality
2001 Gap Tahoe NF 43/33 8/6/2001 7/8/2002 V Tree mortality
2001 Hoover Yosemite NP 42/34 7/27/2000 8/2/2002 V CBI
2001 Star Eldorado NF 43/33 8/6/2001 7/8/2002 V Tree mortality
2001 Stream Plumas NF 44/32 7/12/2001 6/29/2002 V Tree mortality
2002 Birch Inyo NF 42/34 6/7/2002 6/10/2003 T&V Tree mortality, CBI
2002 Cannon Humbolt–Toiyabe NF 43/33 6/14/2002 7/3/2003 T&V Tree mortality, CBI
2002 Cone Lassen NF 44/32 9/25/2002 9/12/2003 T&V Tree mortality, CBI
2002 Fuller Inyo NF 42/34 7/9/2002 7/12/2003 T&V Tree mortality, CBI
2002 McNally Sequoia NF 41/35 6/16/2002 6/19/2003 T&V Tree mortality, CBI
2002 PW-3 Yosemite NP 42/34 7/9/2002 7/12/2003 V CBI
2002 Wolf Yosemite NP 42/34 7/9/2002 7/12/2003 V CBI
2003 Albanita Sequoia NF 41/35 8/22/2003 8/8/2004 T&V Tree mortality, CBI
2003 Dexter Inyo NF 42/34 7/12/2003 7/30/2004 T&V Tree mortality, CBI
2003 Hooker Sequoia NF 41/35 8/22/2003 8/8/2004 T&V Tree mortality, CBI
2003 Kibbie Stanislaus NF 42/34 7/12/2003 7/30/2004 T&V Tree mortality, CBI
2003 Mountain Cmplx Stanislaus NF 43/33 7/3/2003 7/5/2004 T&V Tree mortality, CBI
2003 Mud Stanislaus NF 43/33 7/3/2003 7/5/2004 T&V Tree mortality, CBI
2003 Tuolomne Yosemite NP 42/34 7/12/2003 7/14/2004 V CBI
2003 Whiskey Yosemite NP 42/34 7/12/2003 7/14/2004 V CBI
2003 Whit Stanislaus NF 43/33 7/3/2003 7/5/2004 T&V Tree mortality, CBI
2004 Power Eldorado NF 43/33 7/5/2004 8/25/2005 T&V Tree mortality, CBI
2004 Straylor Lassen NF 44/32 9/12/2003 9/1/2005 T&V Tree mortality, CBI
2006 Hancock Klamath NF 46/31 8/23/2005 8/13/2007 V Tree mortality, CBI
2006 Rush Klamath NF 46/31 8/23/2005 8/13/2007 V Tree mortality, CBI
2006 Somes Six Rivers NF 46/31 8/23/2005 8/13/2007 V Tree mortality, CBI
2006 Titus Klamath NF 46/31 8/23/2005 8/13/2007 V Tree mortality, CBI
2006 Uncles Klamath NF 46/31 8/23/2005 8/13/2007 V Tree mortality, CBI

a SNFPA area fires included all units except Yosemite NP and Klamath NF.
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When performing accuracy assessments, plots should ideally be
randomly located. In this way the distribution of field reference plots
will match the distribution of the features being mapped. If plots are
preferentially located in a map category that yields a higher accuracy
than another category, then map accuracy will be biased and
artificially inflated (Stehman & Czaplewski, 1998; Congalton &
Green, 1999). Plots sampled in the SNFPA planning area were located
at least 300 m apart on randomly placed transects. Fig. 2 shows that
plots measured in the SNFPA fires provide a more or less unbiased
sample of the background distribution of RdNBR values in forest
vegetation types as delineated by the latest vegetation map used by
the Forest Service (Franklin et al., 2000; USDA, 2007). A stratified
random procedure was used to generate potential plot locations on
the 2006 fires in the Klamath Mountains using a preliminary severity
map. Plot locations were chosen to be within one day's hike of a road,
because much of the burned area occurred in remote or wilderness
areas with difficult access. In selecting plots we emphasized those that
exhibited fire effects in the upper-moderate and lower-high severity
categories. Since managers have the most interest in identifying
landscapes that experienced the greatest change with fire, we wanted
to evaluate whether our mapping methods would correctly classify
those locations. Plot locations in the Yosemite fires were selected
randomly within a stratification based on vegetation type.

2.2.1. CBI
The CBI protocol (Key & Benson, 2005a) records fire effects derived

from ocular estimates in five vertical strata: 1) surface fuels and soils;
2) herbs, low shrubs and trees less than 1 m tall; 3) shrubs and trees 1
to 5 m tall; 4) intermediate trees; and 5) large trees. Four or five
variables describing specific effects in each stratum were visually
estimated and scored with a value between zero and three, with zero
indicating no effect of the fire (i.e. unburned) and a three being
maximum severity. As an enhancement to the CBI protocol, actual
values were estimated and recorded for each variable on the SNFPA
fires that occurred during 2004 and the 2006 fires in the Klamath
Mountains. For example, the actual estimated percent canopy
mortality (0–100%) was recorded in addition to rating canopy
mortality with a value between zero and three. Total CBI values
were derived by summing scores from all variables measured in each
stratum and dividing by the number of values measured as described
by Key and Benson (2005a).

Choosing which CBI values to use as thresholds between severity
categories is somewhat subjective. FollowingMiller and Thode (2007),
we chose to place the thresholds halfway between the values listed as
general guides on the CBI data form for low, moderate and high
categories (Table 2). For example, the CBI data form indicates
“moderate” severity for the CBI columns 1.5 and 2.0, and “high”
severity for 2.5 and 3.0. We therefore chose 2.25 as the threshold
between “moderate” and “high” severity categories.

The same plot sizewas not used on all fires. The 30m diameter plot
size recommended by Key and Benson (2005a) was used on the fires
that occurred in Yosemite NP and in the Klamath Mountains. Plots
were either 60 m or 90 m diameter on the remaining fires (90 m in
2002–2004, and 60m in 2005).With the exception of the Yosemite NP
fires, we also documented the overall condition of each plot with
photographs taken at all cardinal directions from the plot center.

The CBI protocol provides a consistent methodology for experi-
enced users to quickly assess relative severity at a location, allowing a
larger number of locations to be sampled thanwould be possible with
a more quantitative protocol. However, variability in CBI values can
occur since the measurements are ocular estimates and accuracy
depends on observer expertise. Korhonen et al. (2006) found that
mean ocular estimates of canopy cover made by experienced forestry
personnel can disagree up to 16% (standard deviation=10%) from
instrumented measurements. In this study, estimation error was
probably exacerbated because the data were collected by different
organizations and crew membership varied from year to year.

2.2.2. Tree mortality data
Data collected to characterize fire effects on trees included status

(live or dead), species, diameter at breast height (dbh), tree height,
scorch height, height to live crown (i.e. crown base height (CBH)), and



Fig. 2. Distribution of plot RdNBR values sampled in the SNFPA area fires vs. the distribution of all RdNBR pixel values in forested vegetation types.
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percent of crown volume scorched. For fires that occurred in the
Klamath Mountains, dbh was measured on each tree in the 30 m
diameter plot. The numbers of trees less than 10 cm in diameter
(saplings) were counted by species. Tree height and CBH measure-
ments were made on the three trees within each plot exhibiting the
maximum, minimum, and median scorch heights. For SNFPA fires
where 60 and 90 m diameter plots were used, individual tree status
and species were measured in four 10 m diameter subplots and tallied
in 10 cm size classes.Whetherdead treeswere killed by thefire orwere
alreadydeadprior to thefirewas determinedbypresence or absence of
dead needles as well as bark and wood consumption patterns.

Pre- and post-fire basal area was calculated from the diameters of
trees thought to have been alive prior to the fire and alive after the fire.
Pre- and post-fire canopy cover was estimated using the Forest
Vegetation Simulator (FVS) (Dixon, 2002). FVS uses empirically derived
allometric equations parameterized by species and dbh to model
individual tree canopies. There are FVS variants for different geographic
regionsof theU.S. to account for regional differences in treemorphology.
We used the northern California (NC) and western Sierra (WS) variants
depending on fire location. FVS was configured to use random
placement of trees and estimates of percent canopy cover were
corrected for tree canopy overlap (Crookston & Stage, 1999). We did
not attempt to evaluate how random placement of trees affected the
accuracy of canopy cover estimates, but other researchers have found
that FVS calculated canopy cover can be more variable than field based
measurements, and that FVS may underestimate cover for plots with
highly regular spatial patterns and overestimate cover for plots with
clustered patterns (Fiala et al., 2006; Christopher & Goodburn, 2008).

FVS derived estimates of individual tree crown cover assume trees
are healthy and unaffected by fire or disease. However, fire can modify
dbh to canopy architecture relationships by raising CBH; thereby
reducing canopy width. Since there was no way to modify crown
width inside FVS, we derived a crown cover correction factor as a
function of the percentage of crown volume scorched (PCVS).
Equations for the Klamath variant of FVS (NC) were used to estimate
an average tree height and crown width for all trees measured in the
Klamath fires. We used equations for modeling crown shape for
Table 2
CBI categories and threshold values

Severity category CBI threshold

Unchanged to low 0–1.25
Moderate 1.26–2.25
High 2.26–3.0
northern California conifer species from Biging and Wensel (1990) to
derive the percent crown cover reduction factor (PctCCF) as a function
of PCVS (Fig. 3) as follows:

PCVS =
V hð Þ×100

CV
ð4Þ

PctCCF = 1−
PCVS
100

� �
×

H−CBH
H−h

� �
ð5Þ

where CV is the total cubic crown volume computed using equation 1
from Biging and Wensel (1990); V(h) is the cumulative crown volume
from the pre-fire CBH to a height h computed using equation 2 from
Biging and Wensel (1990); and H is the total tree height.

2.3. Imagery and preprocessing

Georegistration of images as well as environmental factors such as
atmospheric conditions, topography, surface moisture, seasonal phe-
nology, and solar zenith angle can influence analysis of multi-temporal
change detection protocols (Singh, 1989; Coppin & Bauer, 1996). All
images used in this project were acquired by Landsat TM or ETM+
sensors and geometrically registered using terrain correction algorithms
(Level 1T) by the EROS Data Center and then converted to at sensor
Fig. 3. Canopy cover correction factor as a function of percent of crown volume scorched
(PCVS). Function was derived from canopy models of conifers in northern California
(Biging & Wensel, 1990).



Table 3
Regression models used to calibrate RdNBR to field measured fire severity measures

Variable Model R2 P Parameter (±Std. Error)

a b c

CBIO RdNBR=a+b⁎EXP(CBI⁎c) 0.61 b0.0001 −369.0
±165.9

421.7
±146.7

0.389
±0.081

CBIR RdNBR=a+b⁎EXP(CBI⁎c) 0.68 b0.0001 −123.3
±102.0

196.8
±76.8

0.612
±0.113

PctCC RdNBR=a+b⁎ASIN(SQRT
(PctCC/100))

0.52 b0.0001 161.0
±19.5

392.6
±21.4

PctBA RdNBR=a+b⁎ASIN(SQRT
(PctBA/100))

0.53 b0.0001 166.5
±19.0

389.0
±20.9

CBIO, CBIR, PctCC, and PctBA are described in the text.

Fig. 4. Regressionmodels overlain on RdNBR plot values for all plots with N10% pre-fire tree cover in the SNFPA area (A) CBI modeled using all plots regardless of vegetation type, from
Miller and Thode (2007), (B) CBI modeled using a random set of plots, (C) Percent change in tree canopy cover modeled using a random set of plots, (D) Percent change in tree basal
area modeled using a random set of plots.
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reflectance (NASA, 1998; Chander & Markham, 2003). Post-fire images
were acquired during the summer of the year following each fire to
match the date of field sampling (Table 1). Pre- and post-fire image pairs
were matched as close as possible by anniversary date, within the
constraints of limited budgets and availability of cloud-free imagery, to
minimize sun angle effects and differences in phenology. We chose not
to apply any atmospheric scattering algorithms because: 1) the NBR
index employs only near and short-wave infrared wavelengths that are
minimally affected by atmospheric scattering (Avery & Berlin, 1992),
especially during the summer months in our study areas which have a
Mediterranean climate; and 2) some of the most commonly applied
atmospheric correctionmethods can produce higher error values across
multiple dates than correction only to reflectance at the sensor
(Schroeder et al., 2006). Satellite values were not corrected for
topographic shading since NBR is a ratio and topographic effects cancel
when atmospheric scattering is minimal and solar illumination is
adequate (Kowalik et al., 1983; Ekstrand, 1996). NBR values were
multiplied by1000and converted to integer format tomatchprocedures
established by Key and Benson (2005b).

RdNBR values were normalized in two ways: 1) before calculating
RdNBR, dNBR values for each fire were normalized by subtracting the
average dNBR value sampled from unburned areas outside the fire
perimeter to account for inter-annual differences in phenology and
ensure that unburned areas have values around zero (Key, 2006); 2)
RdNBR was computed as a ratio of change in reflectance in relation to
pre-fire reflectance values which normalized the index to account for
variation in pre-fire vegetation type and density. Pixel values were
thereby converted to a ratio, which theoretically ranges between zero
for unburned areas to a maximum value that represents total above
ground vegetationmortality. This should allow for the development of
thresholds from one set of fires to be applied to other fires across time
and space (Miller & Thode, 2007). In practice, RdNBR continues to vary
in value where complete vegetation mortality has occurred since NBR
is sensitive to ash, char, and substrate composition (Kokaly et al., 2007).

2.4. Classifications

We divided plots from the fourteen 2002–2004 fires in the SNFPA
area originally used inMiller and Thode (2007) into randomly selected
training and validation sets (Table 1). The random training set was
used to develop new regression models and classification thresholds.
We constrained the training plots with the condition that they have at
least 5% pre-fire tree canopy cover. For the remainder of this paper we
refer to the classification originally reported in Miller and Thode
(2007) as CBIO and the classification developed using the random
training set as CBIR. We also developed regression models of percent
change in tree canopy cover (PctCC) and basal area (PctBA) to RdNBR
with data from the same random set of plots from 2002–2004 SNFPA
area fires used to develop CBIR.



Table 4
RdNBR statistics and classification thresholds by severity category for the tree based fire
severity variables

Percentage change in
canopy cover (PctCC)

Percentage change in basal
area (PctBA)

0–25% 26–75% N75% 0–25% 26–75% N75%

Mean 249 456 799 253 439 798
Standard Deviation 188 216 243 193 207 239
Mean−1 Std. Deviation 61 240 556 60 232 559
Mean+1 Std. Deviation 436 671 1041 446 645 1037
Classification thresholds 0–367 368–572 N572 0–370 371–574 N574
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2.5. Error analysis

Error matrices were calculated for classifications of all training and
validation datasets. Only plots with at least 10% pre-fire tree canopy
cover were included when computing error matrices since this is the
cut-off the U.S. Forest Service uses for forested vegetation types
(Brohman & Bryant, 2005). Yosemite plots were not restricted by pre-
fire canopy cover because individual tree data were not available, and
we were thus unable to calculate pre-fire total tree canopy cover. To
conserve space, we report only producer's and user's accuracies and
the Kappa statistic to describe overall classification accuracy.
Producer's accuracy, defined as the probability that a reference plot
classified as category i is also classified as category i by the map, is a
description of map omission error. Commission error is related to
user's accuracy, which is defined as the probability that a pixel
classified as category i by the map is also classified as category i by the
reference data (Stehman & Czaplewski, 1998). The Kappa statistic is a
measure of how well the classification agrees with the reference data,
and is based on the difference between the actual agreement in the
error matrix and the chance agreement indicated by the error matrix
row and column totals. Two tailed t-tests were used for comparing
error matrix Kappa statistics to test hypotheses that there were no
differences in classifications [H0: (Kappa−Kappa)=0; zb1.96; α=0.05]
(Congalton & Green, 1999). The Kappa statistic, which is dependent on
a model-based inference framework, assumes independence of the
training and reference data and that the mapped land-cover
proportions reproduce the observed map proportions in each class
(Stehman, 2000). We were therefore only able to compare producer's
and user's accuracies for the Klamath fires since they were sampled
using a stratified random scheme.

We compared CBIR classifications of both the random training and
validation sets to the CBIO classification to determine whether using all
plots for training altered the accuracy of the classification reported in
Miller and Thode (2007).We also compared theMiller and Thode (2007)
classification to a classification using plots restricted to at least 10% pre-
fire tree canopy cover to determinewhether using only forested plots in
the accuracy assessment would affect the CBIO classification accuracy.

We grouped plots into sets based upon geographic location to test
the hypotheses that thresholds developed on one set of fires can be
used on other fires in the same geographic region, or in a different
region that differs in vegetation structure but supports similar
overstory tree species. For PctCC and PctBA classifications, we
compared accuracies for both random training and validation sets
to: 1) four fires that occurred in the SNFPA area during 2001, and 2)
five fires that occurred in the Klamath Mountains during 2006. Since
CBI was not measured in the 2001 SNFPA fires, we instead compared
the CBIO classification from Miller and Thode (2007) to seven fires in
Yosemite NP as well as the five 2006 Klamath Mountains fires.

Landsat reflectance values can be influenced by a combination of
both understory vegetation and overstory trees, especially where tree
canopy cover is sparse (Spanner et al., 1990; Stenback & Congalton,
1990). Since the PctCC and PctBA classifications were trained
exclusively with tree data, we evaluated how the percentage of pre-
fire tree canopy cover affected accuracies. User's and producer's
accuracies were compared at incremental levels of pre-fire canopy
cover for CBIO, CBIR, PctCC and PctBA classifications of the 2002–2004
SNFPA area fires.

3. Results and discussion

3.1. Regression models

Regression models of RdNBR using values for forested plots
sampled in the SNFPA area were highly significant for CBIO, CBIR,
percentage canopy cover change (PctCC), and percentage basal area
change (PctBA) (Fig. 4). All datawere best fit with nonlinear regression
models and resulted in P values less than 0.0001 (Table 3). Form of the
regression models was chosen so that they produced the highest R2

value and lowest standard error, with the additional requirement that
the model must be of a form that can be inverted to allow calculation
of RdNBR threshold values.

Regressing CBI to RdNBR with all plots (CBIR) or a reduced set of
randomly selected plots with at least 5% tree cover (CBIO) produced
similar models (Fig. 4A and B), with CBIR resulting in a higher R2 value
(0.68 and. 0.61, for CBIR and CBIO, respectively). Most variables
measured in the CBI protocol are relative to the pre-fire condition (Key
& Benson, 2005a). If CBI accurately describes the relative change at a
location as seen from above by the satellite, the relationship of RdNBR
to CBI should also be linear since RdNBR is relative to the pre-fire
condition. The plots of RdNBR vs. CBI in Fig. 4A and B displayed a linear
relationship for CBI values between approximately 0 and 2, but the
slope increased for CBI values greater than 2. Linear regression of CBI
to percent change in canopy cover (not shown) indicated that when
CBI values were 2.25 or greater at least 95% of the tree canopy was
killed (R2=0.56, Pb0.0001). The increasing slope in the RdNBR–CBI
relationship at large CBI values was therefore most likely due to
sensitivity of the Landsat TM bands 4 and 7 to soils, ash, char, and
substrate materials (Kokaly et al., 2007).

PctCC and PctBA models were almost identical (Fig. 4C and D, and
Table 3), which is not surprising since PctCC and PctBA are highly
correlated (r=0.97; Pb0.0001). Variance in both regression models was
fairly large and slope of the model is shallow over most of the range of
values which indicates low discriminating power for the dependent
variable. In fact, themeanRdNBR for the 0–25% and N75% categories lies
within one standard deviation of the 26–75% category mean (Table 4).
Mean RdNBR values for the 0–25% and N75% categories were separated
by more than one standard deviation (Table 4), which suggests that the
regression models should be able to at least discriminate between low
and high severity patches. Examining the distribution of RdNBR values
in the SNFPA area fires (Fig. 2) a peak was noted at about 250 which
corresponds to the mean RdNBR value for the 0–25% change categories.
The percentage of pixels then decreased with increasing RdNBR value
until reaching an inflectionpoint at about 650which corresponds to 90%
change in canopy cover or basal area as computed with the RdNBR
regression models. The PctCC and PctBA regression models indicated
that tree mortality was 100% at RdNBR values greater than 750 (Fig. 4),
yetpixels continued tovary invalue to amaximumof about 1300 (Fig. 2).

3.2. Accuracy assessment

3.2.1. CBI
Accuracies of CBI based classifications were comparable whether

training regression models were based on all or a random subset of
plots; and accuracies for fires in the SNFPA area, Yosemite NP, and the
Klamath Mountains were all similar (Tables 5 and 6). Producer's and
user's accuracies for the high severity category improved when plots
were constrained to a minimum of 10% pre-fire tree cover. Comparing
accuracies reported in Miller and Thode (2007) to those from fires in
Yosemite NP (Table 5), the producer's accuracy for the high severity
category was similar but user's accuracy for the Yosemite fires was



Table 5
Classification accuracies, showing producer's and user's accuracy and Kappa statistics for fires in the SNFPA planning area, Yosemite NP, and the Klamath Mountains

Dataset Producer's accuracy User's accuracy

Unchanged to low
(0–25%)

Moderate
(26–75%)

High
(N75%)

Unchanged to low
(0–25%)

Moderate
(26–75%)

High
(N75%)

Number of plots Overall Kappa Kappa variance

CBIO
⁎SNFPA 2002–2004; all veg types 71.3 53.6 72.1 65.5 58.8 70.4 741 0.464 0.00072
⁎⁎Yosemite NP; all veg types 88.8 29.8 70.7 55.5 45.2 84.3 273 0.435 0.00162
Klamath Mtns 71.4 46.9 70.7 43.5 50.0 85.3 87 0.413 0.00626
All plots 2002–2004 SNFPA 74.6 55.8 80.2 68.0 63.1 76.2 628 0.527 0.00080

CBIR
Training 2002–2004 SNFPA 72.9 59.5 79.1 69.6 63.2 76.8 295 0.521 0.00180
Validation 2002–2004 SNFPA 74.5 60.8 78.1 70.9 63.2 78.1 333 0.552 0.00146
All plots 2002–2004 SNFPA 73.7 60.2 78.5 70.2 63.2 77.6 628 0.539 0.00080

PctCC
Training 2002–2004 SNFPA 73.6 33.8 79.8 74.1 38.1 72.0 295 0.461 0.00176
Validation 2002–2004 SNFPA 72.9 32.4 75.0 73.9 29.6 78.0 346 0.461 0.00140
Validation 2001 SNFPA 78.0 37.7 87.9 62.2 56.9 80.3 252 0.533 0.00185
Klamath Mtns 73.3 37.9 85.7 78.6 52.4 63.2 87
Klamath Mtns corrected for PCVS 73.9 50.0 82.5 60.7 57.1 86.8 87

PctBA
Training 2002–2004 SNFPA 72.3 29.6 81.9 72.3 33.9 73.9 295 0.443 0.00179
Validation 2002–2004 SNFPA 73.9 33.8 76.3 70.6 32.9 80.8 346 0.475 0.00139
Validation 2001 SNFPA 73.5 41.5 89.1 66.7 54.0 83.5 252 0.566 0.00178
Klamath Mtns 68.6 29.6 88.0 82.8 40.0 57.9 87

Note: Accuracies are for plots with at least 10% prefire tree canopy cover, except (⁎) reproduced from Miller and Thode (2007) and (⁎⁎) Yosemite NP. CBIO, CBIR, PctCC and PctBA are
defined in the text.
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higher by 14 percentage points (CBIO in Table 5). The higher user's
accuracy may have been due to a higher proportion of tree-dominated
plots in the Yosemite fires vs. the plots used by Miller and Thode (97%
vs. 91%). For the Klamath fires, producer's accuracy for the CBO high
severity category was lower for all 2002–2004 SNFPA plots with at
least 10% pre-fire tree cover, but similar to the accuracy reported by
Miller and Thode (2007), and user's accuracy was higher. No
difference in Kappa was observed between classifications whether
the regression models were trained using all plots (CBIO) or trained
using a random set of plots (CBIR) (Table 6). There also was no
difference between the Kappa for the classification reported in Miller
and Thode (2007) and the fires in Yosemite NP.

Except for one of sixteen cases, accuracies for the moderate
severity CBI category were always the lowest of the three severity
categories in all classifications (Table 5). Although CBI is a linear
combination of effects seen in all strata, other researchers have also
noted that classification confusion can occur in themoderate severity
category, presumably due to complex interactions between those
Table 6
Classification comparisons for three severity measures using a t-test of Kappa statistics betw

Dataset CBIO: SNFPA area
2002–2004; all veg types

CBIR: training
2002–2004

CBIO
Yosemite NP 0.60
2002–2004 SNFPA; N10% tree cover 1.62

CBIR
Training 2002–2004 SNFPA 0.12
Validation 2002–2004 SNFPA 0.53 0.54
All plots 2002–2004 SNFPA 0.30

PctCC
Validation 2002–2004 SNFPA
Validation 2001 SNFPA

PctBA
Validation 2002–2004 NFPA
Validation 2001 SNFPA

Note: All null hypotheses are accepted except (⁎) H0: (Kapparow−Kappacolumn)=0; zb1.96; α
effects that actually occurred and those that can be observed when
viewed from above by the satellite (De Santis & Chuvieco, 2007). The
high severity category had the highest accuracies, which is desirable,
because areas of high severity fire effects are where the greatest
ecological impacts occur and where most post-fire management
activities take place. Actual map accuracies are probably higher than
those reported in Table 5, for the following reasons: 1) CBI is derived
entirely from ocular estimates and variability in observer's estimates
could greatly impact accuracy assessment results (Congalton, 1991;
Korhonen et al., 2006); and 2) most values estimated in the CBI
protocol are relative to pre-fire conditions, which can be difficult to
discern since pre-fire conditions are often radically altered by fire
(Key, 2006).

3.2.2. Percent change in tree canopy cover and basal area
As with the CBI based classifications, the highest severity category

in the PctCC and PctBA classifications had the highest producer's and
user's accuracies (Table 5). Producer's and user's accuracies for the
een training plots and validation plots

PctCC: training
2002–2004

PctCC: validation
2002–2004

PctBA: training
2002–2004

PctBA: validation
2002–2004

0.00
1.20 1.26

0.57
⁎2.06 1.62

=0.05.
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high severity category ranged between 72.0% and 89.1%, with the
exception of the Klamath fires where accuracies were 63.2% and 57.9%,
respectively. The moderate category of 26–75% change had the lowest
accuracies; lower than the moderate severity category of the CBI
maps, and not much better than would be expected by a random
classification. The low accuracy of the 26–75% category is probably
due to a combination of factors: 1) “moderate” severity fire is by
nature a composite of high and low severity fire effects where neither
clearly dominates; 2) high spatial variability in the distribution of
moderate fire patterns, 3) structural variability in over- and unders-
tory cover, and 4) moderate severity effects are often mapped as
narrow bands surrounding areas of high severity. The first derivative
of RdNBR, shown in Fig. 5 for a typical fire with distinct high severity
patches, demonstrates how the moderate severity category often
occurs in narrow bands of 1 or 2 pixels width around patches of high
severity. As a result, moderate severity fire effects often occur at a
scale that is finer than 30m pixels can be homogeneously categorized;
the resulting “mixed pixels” are a major source of errors in hard (as
opposed to fuzzy) classifications (Congalton & Green, 1999).

There are several possible reasons for the low (63.2% and 57.9%)
user's accuracy of the N75% category for the Klamath PctCC and
PctBA classifications (Table 5). As noted in the methods section, plot
selection in the Klamath Mountains emphasized sampling areas
exhibiting effects in the upper moderate category and lower high
severity category. In some of these moderate to high severity areas,
the tallest trees with largest diameters were the only trees that
retained any green canopy. Total plot basal area was highly skewed by
the large diameter trees and therefore the loss in basal area in these
plots was low relative to the loss of leaf area. Becausewe over sampled
plots falling near the moderate-high severity boundary, the propor-
tion of plots exhibiting this characteristic likely over-represented
the actual area affected by this level of fire severity, consequently
disproportionately lowering the user's accuracy. Post-fire canopy
cover estimates were also affected because FVS calculations of canopy
Fig. 5. A typical fire with distinct high severity patches demonstrating how the
moderate severity category often occurs in narrow bands of rapid transition between
high and low severities. (A) Percent change in tree canopy cover classification. (B) The
first derivative of RdNBR, lighter areas indicates a greater rate of change.
cover do not account for loss of canopy due to scorch (Crookston &
Stage, 1999). This issue is discussed in more detail in the next section
of this paper.

Although PctCC and PctBA producer's accuracies for the 2001
SNFPA fires were about 13 percentage points higher than the random
validation sets, therewas no statistical difference in the Kappa statistic.
The 2001 SNFPA PctBA Kappa statistic was significantly different from
the 2002–2004 training classification (Table 6), with user's and
producer's accuracies for the 2001 validation classification higher
than the training classification (Table 5). The 2001 PctBA validation
classification Kappa statistic was not different from the 2002–2004
validation classification however, norwas the 2001 PctCC classification
different from either the PctCC training or 2002–2004 validation
classification (Table 6). Examining the distribution of plots sampled in
each category, the 2001 SNFPA fires had higher proportion of plots in
the N75% category than did the 2002–2004 fires (48% and 34%,
respectively) whichmay have affected the Kappa statistic comparison.

3.2.3. Effects of sampling protocols and FVS calculations on accuracies
We found that classification errors for canopy cover and basal area

change could be traced both to our sampling protocol and to our use of
FVS to calculate canopy cover. For example, we measured trees in
subplots for the SNFPA fires, but examination of photos of misclassified
plotswith lowpre-fire tree density showed that in some cases the use of
subplots caused trees to be either over or under sampled. Second, in
SNFPA fires, post-fire basal area was overestimated for hardwood tree
species that were top killed and then sprouted post-fire. Pre-fire basal
area was used in calculating post-fire basal area and cover instead of
using the basal area of the post-fire resprouts. Third, calculating canopy
cover with FVS may have underestimated canopy cover change. Given
that FVS uses empirically derived models of canopy cover based on
species and tree diameter, therewasnomethod to account for reduction
in crownwidth due to canopy scorch. For example, nine plots measured
in the Klamath fires had average crown scorch heights that were 90 to
95% of maximum tree height. With this amount of crown scorch, width
of the remaining living crown and therefore canopy cover was likely
substantially smaller than values calculated with FVS. This is one
probable reason for the low user's accuracies in the N75% change
category (Table 5). When we calculated a canopy cover change
correction using the actual (0–100%) “percent scorched” measurement
for overstory trees recorded on the CBI data form as an estimate of PCVS
(Fig. 3), we observed a substantial increase in user's accuracy for
the N75% category (from 63.2 to 86.8%; Table 5). It should be noted that
these errors in deriving field reference values not only affect the error
matrices for the Klamath fires, but also the variance in the SNFPA fire
data. As a result, the PctCC producer's accuracies we reported for SNFPA
fires are probably understated. We could not evaluate how the
correction would affect accuracies for SNFPA fires however, since we
did not record the percentage of crown volume scorched for all SNFPA
area plots. Note that the reduction in Klamath fires user's accuracy for
the b25% category that occurred when applying the canopy cover
change correction may not be realistic. The equations we used to model
canopy shape assume that tree canopies are alwayswidest at the base of
the canopy. If on the other hand, tree canopies are wider in diameter
several meters above the base (Gersonde et al., 2004), low levels of
crown scorch would result in no reduction in canopy cover.

3.2.4. Accuracy as a function of pre-fire tree canopy cover
Mapping vegetation with sparse cover has historically been a

remote sensing challenge since wavelengths used for the detection of
vegetation are also influenced by the amount of exposed soil, parent
substrate, soil water content, and in the case of fire, post-fire ash cover
(Huete, 1988; Rogan & Yool, 2001; Kokaly et al., 2007). With respect to
estimating CBI values with satellite derived indices, Chuvieco et al.
(2006) also found that variations in soil and leaf chlorophyll whenpre-
fire cover was low caused higher noise levels, making it difficult to



Table 7
Producer's and user's accuracy for different fire severity measures as a function of pre-fire tree canopy cover in SNFPA area plots

Variable % Pre-fire
tree cover

Producer's accuracy User's accuracy

Unchanged to low
(0–25%)

Moderate
(26–75%)

High
(N75%)

Unchanged to low
(0–25%)

Moderate
(26–75%)

High
(N75%)

CBIO 1–10 43.5 55.0 83.3 83.3 52.4 45.5
10–20 68.0 59.1 47.4 85.0 43.3 56.3
20–40 71.2 56.8 85.7 78.7 58.1 73.2
40–60 67.3 62.1 84.6 70.0 62.1 80.5
60–80 88.2 52.7 87.8 63.4 76.5 82.7
80–100 76.0 50.9 76.7 51.4 67.5 74.2

CBIR 1–10 43.5 60.0 83.3 83.3 54.5 47.6
10–20 68.0 59.1 47.4 85.0 43.3 56.3
20–40 71.2 63.6 85.7 82.2 60.9 75.0
40–60 63.5 65.5 79.5 70.2 58.5 83.8
60–80 88.2 56.8 85.7 65.2 76.4 84.0
80–100 76.0 56.6 76.7 55.9 69.8 74.2

PctCC 1–10 36.4 66.7 60.5 66.7 9.5 76.7
10–20 75.0 12.5 57.1 81.1 4.8 80.0
20–40 66.2 29.4 79.7 72.9 27.8 74.3
40–60 78.3 41.9 86.0 73.9 46.4 85.1
60–80 76.7 33.3 84.8 69.0 46.3 76.4
80–100 73.5 34.9 81.4 64.3 53.6 68.6

PctBA 1–10 36.4 66.7 57.9 66.7 9.1 75.9
10–20 73.8 20.0 55.6 83.8 4.8 80.0
20–40 67.5 31.0 80.9 77.8 25.7 75.3
40–60 69.7 40.9 87.5 77.5 32.7 88.5
60–80 77.3 35.9 87.8 68.0 51.9 78.2
80–100 87.1 31.6 83.0 47.4 66.7 76.5
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estimate CBI. Satellite reflectance values are primarily correlated to
variables associated with the tree canopy in forested environments.
When tree canopy cover is sparse, satellite reflectance values are
influenced by a combination of both understory vegetation and
overstory trees (Spanner et al., 1990; Stenback & Congalton, 1990).
Conifer forest types in the Klamath Mountains and SNFPA area rarely
experience running crown fire and therefore when overstory trees
experience high severity fire effects, understory plants typically do
also. However, the inverse situation where only understory plants
experience high severity fire while leaving the overstory trees mostly
intact also often occurs (Sugihara et al., 2006). When shrub density is
high and trees are sparse, high severity fire effects to shrubs can
overwhelm a low severity overstory signal. PctCC and PctBA are both
measures of tree canopy; therefore accuracies for those variables
should be highest when tree cover is high. But severity may be over
estimated when tree density is low and understory vegetation has
experienced high severity fire. CBI on the other hand is a measure of
fire effects across all vertical vegetation strata and accuracies should
be higher than PctCC and PctBA when tree density is low.

Examining accuracies with regard to pre-fire tree canopy cover
revealedmostly intuitive patterns (Table7). Producer's accuracies for the
high severity category, regardless of field severitymeasure, were almost
always higher when pre-fire tree canopy cover was at least 20%. The
decrease in user's accuracy for N75% PctCC category when pre-fire
canopy cover was high is most likely due to overestimation of post-fire
tree cover. This is because FVS cannot internally estimate change in
canopy width due to crown scorch (see above), but also because canopy
cover can be overestimated when tree density is high, because FVS
assumes that the complete crown area is included inside the plot
boundary (Crookston & Stage, 1999). User's accuracies of the 26–75%
PctCC and PctBA categorieswere very poorwhenpre-fire tree coverwas
low, but accuracy increased as pre-fire tree cover increased to about the
average level of the moderate CBI category. This was probably due to
plots with few large trees containing more shrubs and small trees; in
these cases change as detected by satellite can be disproportionately
high, evenwith a low-intensityfire that doesnot affect the crownsof the
larger trees. Conversely, user's accuracies for the 0–25% change category
decreased as pre-fire tree cover increased,most likely due to trees in the
upper canopy obscuring the satellite's view of mid-story trees that are
more likely to be affected by lower severity fire. User's accuracies of the
moderate CBI category also increasedwith increasing pre-fire tree cover,
although at a much lower rate. Producer's accuracies of the moderate
severity CBI category consistently averaged between 50 and 60%
regardless of pre-fire tree cover. CBI is a composite measurement of
severity accounting for all vegetation strata, whereas change in canopy
cover and basal area are only a measure of trees. Because the satellite
index is highly sensitive to chlorophyll and is integrated over both
horizontal and vertical space, CBI values more closely represent what is
measured by the satellite, except where post-fire live tree canopy is
dense enough to obstruct the view of the understory.

4. Conclusions

In this paper we demonstrate that the relative index methodology
and CBI regression model presented in Miller and Thode (2007) can
produce classifications that are of similar accuracy in fires not used in
the original calibration process, at least in conifer dominated
vegetation types in Mediterranean–climate California. Models trained
with randomly selected plots also produced classifications with
accuracies similar to the results originally reported in Miller and
Thode (2007). We see no evidence at this time that would preclude
use of themodels presented here for mapping patches of high severity
fire in conifer dominated vegetation types similar to those that occur
in the SNFPA area and Klamath Mountains, whether defined by CBI,
percent change in tree canopy cover or basal area. Accuracies of the
high severity categories across all classifications ranged between
70.7% and 89.1%, which are consistent with those reported by other
researchers (Cocke et al., 2005; Epting et al., 2005; Stow et al., 2007).
Accuracies also tended to increase as a function of increasing pre-fire
tree cover. Classification accuracies for the SNFPA fires are unlikely to
have been overestimated because the distribution of RdNBR values at
field plot locations was similar to the overall distribution of RdNBR
values in those fires. Indeed, there is evidence that all our classification
accuracies may be understated because: 1) the ground measure itself,
CBI, contains variation that is unaccounted for due to reliance on
ocular estimates; 2) FVS canopy cover estimates do not account for
percent of crown volume scorched; 3) other studies have shown that
variability in FVS tree canopy cover estimates can be high; 4) basal
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area estimates in the SNFPA fires did not account for reduction in basal
area of sprouting hardwood species; and 5) trees may have been over
or under sampled in plots with low pre-fire tree density in the SNFPA
fires.

Our modeling of the relationship of RdNBR to percent change in
canopy cover and basal area resulted in similar regressionmodels. There
are difficulties with mapping either variable. We acknowledge that
modeling canopy cover using tree inventory data may not be the most
precisemethod, butwe used establishedmethods andwhen combining
data from multiple fires our sample size should have allowed for suffi-
cient accuracy inour regressionmodel. In contrast basal areadependson
the relationship of tree diameter to canopy width which is modified by
fire, but the wavelengths recorded by the satellite and used in the NBR
index are more directly related to the canopy, not dbh. Our results
however, will allow land managers to better understand how both of
these variables relate tomaps of severity derived from satellite imagery.

Passive remote sensing of fire effects to individual strata in forested
environments is difficult due to the complex combination of effects
integrated over vertical and horizontal space. The low accuracy of the
26–75% change category for the PctCC and PctBA classifications
demonstrates the difficulty in separating out those effects. More
sophisticated analysis techniques, such as spectral mixture analysis
(SMA), may bemore successful (Rogan & Franklin, 2001; Lu et al., 2005).
Detailedmappingof individual severity effects using SMAtechniques on
hundreds of fires, however, would require time and expertise not
available to many organizations, and development of automated SMA
techniques for discriminating effects to individual forest strata has not
yet occurred. Our analyses show that maps of percent change in tree
canopy cover or basal area produced with the methods presented here
can be usedwith reasonable accuracy to identify and analyze patches of
high fire severity (N75% change). On the other hand, accuracies of the
moderate (26–75%) change categories were much lower, warranting
greater scrutiny and caution in application. The CBI classification
resulted in higher accuracies for the moderate category, but is probably
best used with the understanding that the total plot CBI used in this
study is an aggregate of fire effects across all strata, and not uniquely
descriptive of effects to any single stratum.
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